Correspondence and requests for materials should be addressed to K.W.K.

Received 27 May; accepted 1 July 1997.

12. Orrenius, S., Nobel, C. S. I., van den Dobbelsteen, D. J., Burkitt, M. J. & Slater, A. F. G. Glutathione concentrations were measured using an assay kit (Oxford Biomedical) according to the manufacturer's instructions. Caspase activation was assessed by means of PARP. Lysates from cells infected with Ad-p53 were western-blotted with an anti-PARP antibody and the cleavage fragments quantified by densitometry4.

Figure 1 Self-organization of taxol-stabilized microtubules and kinesin constructs into asters. a, Schematic representation of a kinesin–streptavidin construct moving simultaneously along two microtubules. The kinesin constructs can be seen as force-generating, mobile crosslinks. b, A self-organized aster observed by dark-field microscopy. Polymerized and taxol-stabilized microtubules were mixed with motor constructs and ATP. The sample is shown after ~2 min. The bright spot in the centre of the aster is caused by light scattering from accumulated microtubules and motors. In cells and cell-free extracts, where the asters are organized by minus-end-directed motors such as dyneins10,11, the aster polarity is opposite. Scale bar, 20 µm.

Self-organization of microtubules and motors

F. J. Nédélec†*, T. Surrey*, A. C. Maggs† & S. Leibler†

† Departments of Molecular Biology and Physics, Princeton University, Princeton, New Jersey 08544, USA

Laboratoire de Physico-Chimie Théorique, Ecole Supérieure de Physique et Chimie Industrielles, 10 rue Vauquelin, 75231 Paris, France

Cellular structures are established and maintained through a dynamic interplay between assembly and regulatory processes. Self-organization of molecular components provides a variety of possible spatial structures: the regulatory machinery chooses the most appropriate to express a given cellular function4. Here we study the extent and the characteristics of self-organization using microtubules and molecular motors3 as a model system. These components are known to participate in the formation of many cellular structures, such as the dynamic asters found in mitotic and meiotic spindles12. Purified motors and microtubules have previously been observed to form asters in vitro4. We have reproduced this result with a simple system consisting solely of multi-headed constructs of the protein kinase kinesin12 and stabilized microtubules. We show that dynamic asters can also be obtained from an homogeneous solution of tubulin and motors. By varying the relative concentrations of the components, we obtain a variety of self-organized structures. Further, by studying this process in a constrained geometry of micro-fabricated glass chambers7, we demonstrate that the same final structure can be reached through different assembly ‘pathways’8. A dividing cell has to separate spatially its newly duplicated chromosomes. It uses the bipolar spindle, a complex molecular structure made of many different protein components, to accomplish this task with high precision. Spindle formation is an intensively studied prototype of cell morphogenesis phenomena. A bipolar spindle forms when mitotic chromosomes capture and selectively stabilize dynamic microtubules nucleated by two centrosomes1. This process assembly tolerates numerous variations in intermediate configurations, such as different chromosome positions and geometrical and mechanical perturbations8. Spindles

a ~260-bp restriction fragment, and end-labelled. Immunochemical assays were performed as described4. Flow cytometry and other assays. Cells were collected with the aid of trypsin and incubated with CM-DCC-DA or NAO (Molecular Probes) at concentrations of 10 and 0.4 µM, respectively, for 20 min at 37°C before analysis by flow cytometry13,14. To determine the fraction of apoptotic cells after various treatments, cells were stained with the DNA-binding dye H33258 and evaluated by fluorescence microscopy or flow cytometry as described3. Superoxide production was assessed with lucigenin2. In brief, 4–5 × 105 cells were collected with a rubber policeman and resuspended in 1 ml Earle’s balanced salt solution (Life Technologies). Dark-adapted lucigenin (bis-N-methylacridinium nitrate; Sigma) was added to the samples to 20 µM final concentration. Light emission was detected using a Berthold LB 9505 luminometer for 60 min at 37°C. Luminol and lucigenin concentrations were measured using an assay kit (Oxford Biomedical) according to the manufacturer’s instructions. Caspase activation was assessed by means of PARP. Lysates from cells infected with Ad-p53 were western-blotted with an anti-PARP antibody and the cleavage fragments quantified by densitometry4.
also form in the absence of centrosomes, as observed in meiotic cell divisions, and, more surprisingly, in *in vitro* experiments in *Xenopus laevis* egg extracts devoid of centrosomes, in which case microtubules grown in the vicinity of chromatin are organized into bipolar spindle by molecular motors.

In order to explore the issues of self-organization of microtubules and motors, we have constructed an extremely simplified system with only a few purified components. In addition to tubulin, this system includes artificial molecular constructs of several kinesin heads associated through biotin–streptavidin links. We chose kinesin because of its extensive molecular characterization. The motor constructs (kinesins or motors) attach to neighbouring microtubules and, in the presence of ATP, move towards the microtubule 'plus' ends. In this way they form dynamic crosslinks between microtubules (Fig. 1a).

An aster formed in a system of microtubules stabilized with taxol and mixed with motors is shown in Fig. 1b. The sample is sandwiched between slide and coverslip in a quasi-two-dimensional geometry. The starting configuration is an isotropic 'gel' consisting of microtubules crosslinked randomly by motors (not shown). Asters of microtubules form within a few minutes as kinesins accumulate in their centres. The size of the asters is expected to be determined by the length distribution of stabilized microtubules. Similar asters were previously observed to form in a system of purified heavy chains of kinesin mixed with microtubules, as well as in *Xenopus laevis* egg extracts with the addition of microtubule stabilizing agents.

The use of taxol allows us to control microtubule length and number, although stabilizing microtubules with taxol is not necessary for aster formation: asters also form if microtubules are allowed to assemble and disassemble through the dynamic instability. All further experiments, presented below, are performed in the absence of taxol.

To study the influence of geometrical constraints on self-organization, we have encapsulated solutions of tubulin and motors in sealed micro-fabricated glass chambers of various shapes, with typical lateral dimensions of 100 \(\mu \)m and a thickness of 5 \(\mu \)m (Fig. 2). In a cylindrical geometry, microtubules polymerizing from an initially homogeneous solution first organize into a symmetric aster centred in the chamber. As microtubules continue to grow and begin to buckle, the centre of the aster becomes unstable and a vortex structure forms. Vortices can be observed simultaneously in hundreds of chambers etched in a single coverslip and filled with the same initial solution. We saw an equal number of structures with right-handed and left-handed vorticity. Because vortices form from asters, the microtubules have their plus ends oriented towards the centre of the vortex. Small objects, such as short microtubules or small colloidal beads with motors attached to them, circle around the core of the vortex. This circulatory motion is reminiscent of the microtubule- and motor-dependent movement of cytoplasm observed in the development of *Drosophila melanogaster* oocytes.

One advantage of using highly simplified systems with a small number of well-characterized components is the accessibility to quantitative theoretical analysis. Aster formation can be studied in numerical simulations, in which microtubules are treated as flexible, polar rods, and kinesin-like motors are characterized by a linear force–velocity curve and high processivity. Vortices can also be reproduced in numerical simulation by incorporating geometrical confinement and the dynamic assembly of microtubules (Fig. 2b). This simulation exhibits an assembly pathway very similar to that in the experiments, in which an initially symmetric aster is destabilized by the growth and buckling of microtubules.

To determine whether assembly through a symmetric aster is the only possible route leading to the final vortex structure, we enclosed the same solution of proteins in a chamber of the same size but with the topology of a torus. The idea for this came from experiments of microsurgery performed on melanophores in which the geometry of the cell was changed artificially. The formation of symmetric asters is now prevented by the geometry of the chamber, but the same final steady state, a vortex, can nevertheless be reached (Fig. 2c), demonstrating that this simple system can find alternative 'assembly pathways'. This is similar to results obtained in *Xenopus laevis* egg extracts, in which microtubule asters were formed either around centrosomes or through motor-mediated assembly. The existence of alternative 'assembly pathways' can be of more general importance. It is easy to imagine that, as in the case of metabolic or signal transduction pathways, a given route of assembly could be selected depending on cell type, interactions with the environment, or state of growth.

Further experiments have shown that the precise shape of the containers is often unimportant for the choice of final assembled structures. For instance, we have regularly observed formation of circular vortices in square chambers (data not shown). However, in a chamber of the same torus-like shape but of a larger lateral size, a different final structure is observed (Fig. 2d).

A surprising variety of larger-scale patterns can be formed in an unconfined geometry by further self-organization of the previously

Figure 2 Self-organization in the constrained geometry of micro-fabricated chambers etched in glass. a, Formation of a vortex as observed by dark-field microscopy in a chamber of diameter 90 \(\mu \)m and depth 5 \(\mu \)m. Microtubule polymerization has been initiated by warming to 37°C. Left, after ~5 min, microtubules nucleate uniformly in the sample; middle, after ~15 min, an aster forms in the centre of the chamber; right, after ~3 min, a steady-state vortex structure is observed. b, Two-dimensional numerical simulation of the same process. The microtubule mean length was initially smaller than the chamber radius, but became longer than it in the state shown. c, Vortex structure in a torus-shaped chamber of the same diameter as previously, but including a central unetched region. d, Steady-state structure in a torus-shaped chamber of larger size (240 \(\mu \)m). The three vortices have the same core size as those in a and c. Scale bars, 20 \(\mu \)m.
described structural elements, asters and vortices. The final patterns depend on the initial concentrations of molecular components: a twofold variation in the concentration of kinesin, included in the same solution of assembling microtubules, results in quite different patterns (Fig. 3). At low motor concentrations a lattice of vortices forms, but at slightly higher kinesin concentrations lattices of asters can be observed. Although the asters obtained in our simplified systems are similar to those observed in cells or cellular extracts, the precise dynamical parameters characterizing both microtubules and motors are very different. When two neighbouring asters overlap sufficiently, they can merge, and this process may determine the final distance between the asters. Finally, at even higher motor concentrations, a distinct state is achieved in which the microtubules form bundles. This process is sensitive to the microtubule nucleation rate, and depends on the ionic conditions.

We have shown that the dynamics of microtubules and motors has to be controlled for a desired structure, such as an aster or a vortex, to be obtained. In our simplified systems this is achieved by controlling the motor and tubulin concentrations. However, in the cellular context the choice of different structures does not necessarily involve the precise variation of relative protein concentrations, but rather the control of their activities. The cell can control the action of motors and the dynamics of microtubule assembly through various regulatory processes, such as covalent modifications and binding of associated proteins.

The self-organization we have observed can be compared to the pattern formation encountered in simple physical systems, in which a variety of structures has been formed far from thermal equilibrium from a homogeneous solution of proteins and from a gel of fibres, connected through non-covalent dynamic crosslinks. The energy dissipated in these structures is injected into the system through ATP and GTP hydrolysis. From this point of view, the situation is reminiscent of patterns formed in chemical reactions. The use of protein components, however, means that there is the possibility of additional control at the molecular level. A complete characterization of the phenomena described here should really include an evaluation of all the relevant time and length scales, and the determination of the out-of-equilibrium phase diagrams.

These simplified experiments show that the basic structural ‘vocabulary’ used by the cell is extremely rich. By using just two basic components and simple local rules of interaction, we obtained a large variety of assembled structures. By extending our system as to include other interacting components, such as nucleation centres for microtubules or different motors, it will be possible to explore the conditions and the components needed for the formation other structures. Another direction of study would be to introduce some elements of regulation, making it possible to search for rules underlying the choice of different ‘words’ from this large ‘vocabulary’ of self-organized structures.

Methods

Proteins. Recombinant kinesin K401-bio, consisting of 401 amino acids of the N-terminal motor domain of the heavy chain of *D. melanogaster* kinesin linked to the BCCP sequence of *Escherichia coli*, was expressed in *E. coli* and purified. Recombinant kinesins form bioencoded active dimers, which can then be joined by adding streptavidin (Molecular Probes). A solution of motor constructs was obtained by mixing streptavidin and purified K401-bio, giving final concentrations of 30 μM and ~150 μM, respectively. Complex formation was verified by gel filtration and light scattering. Tubulin was purified from bovine brain; the stock solution was at ~15.3 mg ml⁻¹ in storage buffer (80 mM PIPES and KOH to pH 6.8, 2 mM MgCl₂, 1 mM EGTA).

Assay with stabilized microtubules. To polymerize microtubules, a solution containing 1.25 mg ml⁻¹ tubulin, 1 mM GTP, 1% DMSP in storage buffer was kept at 37°C for 15 min, and taxol was then added to a final concentration of 20 μM. Polymerized microtubules were kept at room temperature. To start self-assembly, polymerized microtubules, motor constructs and ATP solution were mixed to give final concentrations of 0.27 mg ml⁻¹ tubulin, 50 μM K401-bio, 10 μM Streptavidin, 1.4 mM ATP, 0.6 mM GTP, 7.7 mM MgCl₂, 4.3 mM KCl, 1 mM EGTA, 27 μg ml⁻¹ α-casein (Sigma), 0.3% DMSO, 20 μM taxol, 80 mM PIPES/KOH to pH 6.8. This mixture was immediately examined by microscopy. Kinesin K401-bio moves microtubules with typical speeds up to ~0.8 μm s⁻¹ in motility assays (data not shown). We have varied the relative amount of streptavidin to kinesin and found that the maximum activity in motility assays is observed at a stochiometric ratio of approximately four K401-bio dimers per streptavidin tetramer; this ratio was used for all experiments. The precise ratio of active kinesins per streptavidin might vary to some extent in our experiments owing to some variability of the kinesin activity of different purifications. All experiments were performed several times and the resulting structures were found to be reproducible. No asters are formed without streptavidin or with too much streptavidin. In the absence of ATP, a crosslinked gel of microtubules forms not showing any further temporal evolution.

Assay with non-stabilized, dynamic microtubules. A mixture of purified (unpolymerized) tubulin, motor constructs and nucleotides was now used. Apart from an increased tubulin concentration of 5.1 mg ml⁻¹ and absence of taxol, all other concentrations were kept as in the assay with stabilized microtubules, unless specified otherwise. Polymerization of microtubules was started by heating the sample to 37°C on the microscope.

Glass cleaning and coating. VWR-brand 24 X 60 mm no. 1 coverslips were cleaned by three rounds of sonication in a hot solution (~80°C) of 10% detergent VWR-Extran 1000 in de-ionized water, followed by 5 rounds of...
sonication in pure, hot, de-ionized water. Slides were then immersed in pure ethanol and air-dried. Glass cleaned this way was hydrophilic. To prevent kinesin and microtubules from sticking to the surface, slides were coated by dipping them into a solution of 0.1% agarose in de-ionized water and were allowed to dry. This layer was further coated by dipping the glass first into a 30% CHCl3 solution of 0.2% bovine serum albumin in storage buffer filtered at 0.2 μm, and then four times into de-ionized water. Coated slides were kept humid and were used within a few hours.

Fabrication of microchambers. This was performed as described previously6. Glass with microfabricated chambers was cleaned and coated as usual. Sealing of the microchambers was achieved by applying a steady ~20 kg cm⁻² pressure for 3 min on the pit-containing coverslip and the slide.

Microscopy and imaging. A Zeiss Axiovert 135 TV with an Olympus 100x iris objective, an Olympus 2x objective and a Zeiss dark-field ultra condenser was used. Both condenser and objective were heated to warm the immersion oil and the sample 37 °C by circulating warm water through copper tubing wrapped around them. A CCD camera (Paultek) was used to record on S-VHS video tape, and no video processing was necessary to observe microtubules. A Nikon camera was also mounted on the microscope to take slides with Kodak Ektachrome P1600 film.

Simulations. Simulations will be described in detail elsewhere (F.N. et al., manuscript in preparation). Briefly, microtubules were represented by short rigid rods of 6 μm connected with flexible links: they could grow and shrink according to a simple model of dynamic instability6. The simulations were two-dimensional; this corresponds well to experiments performed in thin chambers or between closely spaced glass surfaces, in which microtubules are nearly parallel to the plane of the sample. Motor complexes could bind up to two microtubules. Unbound complexes could diffuse freely, whereas complexes bound to two microtubules exerted a spring-like force between them. The movement of the microtubules was then calculated at each time step by assuming a completely damped viscous regime. At each time step, motors moved along the microtubules with a speed that is a function of the force they exert. Relevant parameters are known from previous experiments, such as a polymerization speed of 2 μm min⁻¹ (ref. 28), a microtubule persistence length of 5 nm (ref. 29), a linear force–speed curve with maximum speed 0.8 μm s⁻¹, and a maximum force of 5 pN (refs 10, 11). A typical simulation covered 10 min of real time.

letters to nature

Structure of a viral procapsid with molecular scaffolding

Terje Dokland1, Robert McKenna1, Leodevico L. Ilag1, Brian R. Bowman1, Nino L. Incardona1, Bentley A. Fane1 and Michael G. Rossmann2

* Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
‡ Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163, USA
§ Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA

The assembly of a macromolecular structure proceeds along an ordered morphogenetic pathway, and is accomplished by the switching of proteins between discrete conformations as they are added to the nascent assembly6–8. Scaffolding proteins often play a catalytic role in the assembly process9,10, rather like molecular chaperones11. Although macromolecular assembly processes are fundamental to all biological systems, they have been characterized most thoroughly in viral systems, such as the cosahedral Escherichia coli bacteriophage ΦX174 (refs 6, 7). The ΦX174 virion contains the proteins F, G and H6. During assembly, two scaffolding proteins B and D are required for the formation of a 108S, 360-Å-diameter procapsid from pentameric precursors containing the F, G and H proteins6,9. The procapsid contains 240 copies of protein D, forming an external scaffold, and 60 copies each of the internal scaffolding protein B, the capsid protein F, and the spike protein G6,9,10. Maturation involves packaging of DNA and J proteins and loss of protein B, producing a 132S intermediate6,7. Subsequent removal of the external scaffold yields the mature virion. Both the F and G proteins have the eight-stranded antiparallel β-sandwich motif6,12,13 common to many plant and animal viruses12,13. Here we describe the structure of a procapsid-like particle at 3.5-Å resolution, showing how the scaffolding proteins coordinate assembly of the virus by interactions with the F and G proteins, and showing that the F protein undergoes conformational changes during capsid maturation.

For the structure determination we obtained a low-resolution, 6.5-Å data set collected from a single, frozen crystal, and a higher-resolution, 3.5-Å data set collected from a number of crystals at 4 °C (Table 1). The structure was solved to nearly 3.5-Å resolution by molecular-replacement real-space averaging14, using a starting model based on the previously determined electron-microscopic

1Present addresses: Department of Biological Sciences, Warwick University, Coventry CV4 7AL, UK (R.M.B.); MorphoSys GmbH, Frankfurtier Ring 19a, 80807 München, Germany (L.I.L.); Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA (B.R.B.).